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Abstract 
This study presents a probabilistic model of melody 
perception, which infers the key of a melody and also 
judges the probability of the melody itself. (A “melody” is 
defined here as a sequence of pitches, without rhythmic 
information.) The model uses Bayesian reasoning. A 
generative probabilistic model is proposed, based on three 
principles: 1) melodies tend to remain within a narrow 
pitch range; 2) note-to-note intervals within a melody tend 
to be small; 3) notes tend to conform to a distribution (or 
“key-profile”) that depends on the key. The model is tested 
in three ways: on a key-finding task, on a melodic 
expectation task, and on an error-detection task.  

Keywords: Music cognition, key identification, 
probabilistic modeling, expectation, error detection  

1. Introduction 
In recent years, methods of Bayesian probabilistic 
modeling have been widely used in a variety of areas in 
information processing and cognitive modeling, such as 
natural language processing, vision, and knowledge 
representation; they have also been applied to musical 
problems such as transcription [1] and metrical analysis [2, 
3]. In general, we can frame the Bayesian approach as a 
way of recovering some kind of underlying structure from 
some kind of surface representation. Bayesian logic tells 
us that  
 

P(structure | surface)  
∝ P(surface | structure)P(structure)     (1) 

 
Thus we may determine the most probable structure given 
a surface if we know, for all structures, the probability of 
the surface given the structure and the prior probability of 
the structure. A further consequence of the Bayesian 
approach is the possibility of calculating the probability of 
the surface pattern itself: 
 

P(surface)  = ∑ P(structure, surface)  
 
                  = ∑ P(surface | structure) P(structure)    (2) 

 
It can be seen, then, that calculating the most probable 
structure given a surface and calculating the probability of 
a surface are very closely related problems.  

In the current case, we define a surface as a sequence 
of pitches (without rhythmic information); the structure is 
a key. The problem, then, is to determine the most 
probable key given a note sequence—this is the familiar 
and well-studied “key-finding” problem. The probability 
of a surface is then the probability of a sequence of pitches. 
I will argue that this concept of “surface probability” is of 
relevance to a variety of processes in music information 
processing, such as expectation, error detection, and 
transcription. (More information about the model 
presented here can be found in [4]). 

Like most Bayesian models, our approach begins with 
a generative model, which generates a key and then a 
series of pitches. The model also considers two other 
important factors in melodic construction, range and pitch 
proximity. To set the model’s parameters, we use a corpus 
of over 6,000 computationally-encoded European folk 
melodies, the Essen Folksong Collection [5]. We will then 
show how this model can be used in Bayesian fashion to 
perform key identification as well as “surface-level” 
processes such as expectation and error detection.  

2. The Generative Model 
We begin with a very basic question: What kind of pitch 
sequence makes a likely melody? Perhaps the first 
principle that comes to mind is that a melody tends to be 
confined to a fairly limited range of pitches. In the Essen 
corpus, the average range of a melody (from the highest to 
the lowest pitch, inclusive) is 13.6 semitones. We can 
model this situation in a generative way by first choosing a 
central pitch c for the melody; this is randomly chosen 
from a normal distribution, which we call the central pitch 
profile. We then create a second normal distribution 
centered around c, the range profile, which is used to 
actually generate the notes. A melody can then be 
constructed as a series of notes generated from the range 
profile.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. 
© 2006 University of Victoria 

structure 

structure 



A further important principle in melodic construction 
is that intervals between adjacent notes in a melody tend to 
be small [6]. In the Essen corpus, more than half of all 
melodic intervals are 2 semitones or less. We can 
approximate this distribution of melodic intervals with a 
proximity profile—a normal distribution centered around a 
given pitch, indicating the pitch probabilities for the 
following note. We then create a new distribution which is 
the product of the proximity profile and the range profile. 
In effect, this “range × proximity” profile favors melodies 
which maintain small note-to-note intervals, but also 
remain within a fairly narrow global range.  

Our third and final principle of melodic construction is 
that melodies (at least in the Western tradition) tend to 
adhere to the scale of a particular key. We incorporate this 
using the concept of key-profiles. A key-profile is a 
twelve-valued vector, representing the stability or 
appropriateness of pitch-classes in relation to a key [8]. In 
this case, the key-profiles are based on the actual 
distribution of scale-degrees (pitch-classes in relation to 
the key) in the Essen corpus. We count the occurrences of 
each scale-degree in each song; we sum these counts over 
all songs (grouping major-key and minor-key songs 
separately), and express the totals as proportions. The 
resulting key-profiles are shown in figure 1. The profiles 
show that, for example, 18.4% of notes in major-key 
melodies are scale-degree 1. The profiles reflect 
conventional musical wisdom, in that pitches belonging to 
the major or minor scale of the key have higher values than 
other pitches, and pitches of the tonic chord (the 1, 3, and 5 
degrees in major or the 1, b3, and 5 degrees in minor) have 
higher values than other scalar ones.  
 

 

 
Figure 1. Key-profiles for major keys (above) and minor keys 

(below). 
To combine all three of our principles together, we 

duplicate the key-profiles over many octaves; we can then 
multiply a key-profile together with the range and 
proximity profiles. We will call the resulting distribution 

the RPK profile. (To be interpretable as probabilities, the 
RPK profile values must be normalized to sum to 1.) In 
generating a melody, we must construct the RPK profile 
anew at each point, since the proximity profile depends on 
the previous pitch. (For the first note, since there is no 
previous pitch, we simply use the product of the range and 
key profiles.)  

Figure 2 shows an RPK profile, assuming a key of C 
major, a central pitch of 68 (Ab4), and a previous note of 
C4. One can discern a roughly bell-shaped curve to this 
profile (though with smaller peaks and valleys). The 
proximity profile pulls the center of the curve towards C4, 
but the range profile pulls it towards Ab4; the result is that 
the actual center is in between the two. The key-profile 
gives higher values to pitches that are within the C major 
scale, thus accounting for the local peaks and valleys.  

 
Figure 2. An RPK profile, assuming a key of C major, a 

central pitch of Ab4, and a previous pitch of C4. 
The generative process thus operates by choosing a 

key and a central pitch, and then generating a series of 
pitches. (The process does not decide how many pitches to 
generate; this is assumed to be given.) The probability of a 
pitch occurring at any point is given by its RPK profile 
value: the normalized product of its range-profile value 
(given the central pitch), its proximity-profile value (given 
the previous pitch), and its key-profile value (given the 
chosen key). We express the joint probability of a pitch 
sequence of n notes with a key k and a central pitch c as 
follows:   

 
P(pitch sequence, k,  c) = P(k) P(c) Π RPKn      (3) 

    
where P(k) is the probability of a key being chosen, P(c) is 
the probability of a central pitch being chosen, and RPKn 
are the RPK-profile values for the pitches of the melody 
given the key, central pitch, and previous pitch. We 
assume that all keys of the same mode are equal in prior 
probability, since most listeners—lacking “absolute 
pitch”—are incapable of identifying keys in absolute 
terms. However, we assign major keys a higher probability 
than minor keys, reflecting the higher proportion of major-
key melodies in the Essen collection.  

How do we calculate the overall probability of a pitch 
sequence? For the moment, let us think of the structure as 
the combination of a key and a central pitch; the surface is 
a sequence of pitches. From equations 2 and 3 above:  

n 



P(pitch sequence) = ∑ (P(k) P(c) Π RPKn)              (4)
     
This can be calculated quite easily by considering each (k, 
c) pair and calculating the joint probability of the pitch 
sequence with that pair. 

3. Testing the Model on Key-Finding 
We now consider how the generative process described 
above might be incorporated into a key-finding model. The 
task is simply to choose a single key for a given melody. 
(We do not allow the possibility of modulations—changes 
of key.) Using Bayesian logic, the most probable key given 
the melody will be the one maximizing P(k, pitch 
sequence). Using equations 2 and 4 above:  
 

  P(k, pitch sequence) = ∑ (pitch sequence, k, c) 
        

= ∑ (P(k) P(c) Π RPKn)        (5) 
 
Thus the most probable key given a pitch sequence is the 
one maximizing this expression. 

Our key-finding process thus proceeds as follows. For 
each key, we calculate the joint probability of the melody 
with that key and each central pitch, and sum this over all 
central pitches. The probability of a pitch at a given point 
in the melody depends only on its value in the RPK profile 
at that point; the RPK profile can be recreated at each note, 
just as it was in the generative process. We perform this 
process for all keys, and choose the key yielding the 
highest value; this is the most probable key given the 
melody.  

To test the model’s key-finding ability, we use a 
sample of 65 songs from the Essen collection. (This 
sample was not included in the corpus used for setting the 
model’s parameters.) Each song in the corpus is annotated 
with a single key label; these labels provide a set of 
“correct” judgments against which the model can be 
evaluated. The model judged the key correctly for 57 of 
the 65 melodies (87.7%). By way of comparison, two other 
well-known key-finding algorithms were also tested on the 
corpus (using my own implementations). The model of 
Longuet-Higgins and Steedman [7] guessed the correct key 
on 46 out of 65 melodies, or 70.8% correct; the model of 
Krumhansl and Schmuckler [8] guessed the correct key on 
49 out of 65, or 75.4% correct. 

4. Expectation and Error Detection 
It is well known that in listening to a melody, listeners 
form expectations as to what note will occur next. Melodic 
expectation has been the subject of a great deal of research 
in music psychology and music theory. Of particular 
interest here is an experimental study by Cuddy and 
Lunney [9]. In this study, subjects were played a context of 
two notes played in sequence (the “implicative interval”), 
followed by a third note (the “continuation tone”), and 

were asked to judge the third note given the first two on a 
scale of 1 (“extremely bad continuation”) to 7 (“extremely 
good continuation”). Eight different contexts were used: 
ascending and descending major second, ascending and 
descending minor third, ascending and descending major 
sixth, and ascending and descending minor seventh. Each 
two-note context was followed by 25 different 
continuation tones, representing all tones within an octave 
above or below the second tone of the context (which was 
always either C4 or F#4). For each condition (context plus 
continuation tone), Cuddy and Lunney reported the 
average rating, thus yielding 200 data points in all.  

We tested the current model’s ability to predict 
melodic expectation, using Cuddy and Lunney’s data. To 
do this, it was necessary to interpret their data 
probabilistically. Specifically, each rating was taken to 
indicate the log probability of the continuation tone given 
the previous two-tone context. Under the current model, 
the probability of a pitch pn given a previous context 
(p0…pn–1) can be expressed as  

 
P(pn | p0…pn–1) = P(p0…pn) / P(p0…pn–1)                   (6)

     
where P(p0…pn) is the overall probability of the context 
plus the continuation tone, and P(p0…pn–1) is the 
probability of just the context. An expression indicating 
the probability of a sequence of tones was given in 
equation 4 above; this can be used here to calculate both 
P(p0…pn–1) and P(p0…pn). For example, given a context of 
(Bb4, C4) and a continuation tone of D4, the model’s 
expectation judgment would be log(P(Bb4, C4, D4) / 
P(Bb4, C4)) = –1.955.  

The model was run on the 200 test items in Cuddy and 
Lunney’s data, and its outputs were compared with the 
experimental ratings for each item. Using the parameters 
gathered from the Essen Folksong Collection, the model 
yielded the correlation r = 0.664. It seemed reasonable, 
however, to adjust the parameters to achieve a better fit to 
the data. (This is analogous to what is done in most other 
tests of expectation models—such as those in [9] and 
[10]—in which multiple regression is used to fit a set of 
factors to the data in an optimal way.) With adjusted 
parameters, the model achieved a score of r = .822. This 
score is slightly better than that of Cuddy and Lunney’s 
own model (.80), though not quite as good as that of 
Schellenberg’s model [10] on the same data (.851).  

Another kind of phenomenon that is illuminated by 
the current model could be described as “pitch error 
detection.” It seems uncontroversial that most human 
listeners have some ability to detect errors—“wrong 
notes”—even in an unfamiliar melody. The ability of the 
current model to detect errors was tested using the 65-song 
Essen test set described above. The model was given the 
original melodies as well as randomly distorted versions of 
the same melodies; the question was whether it could 
reliably assign a higher probability to the correct versions 

n  c 

 c 

n k, c 



as opposed to the distorted versions. The deformed version 
of a melody was produced by randomly choosing one note 
and replacing it by a random pitch within the range of the 
melody (between the lowest and highest pitch). The 
process was repeated 10 times for each of the 65 melodies, 
yielding a total of 650 trials. In each trial, the model’s 
analyses for the correct version and the deformed version 
were compared simply with regard to the total probability 
given to each melody (as defined in equation 4), to see 
which version was assigned higher probability. In effect, 
then, the model simply judged which of a pair of melodies 
was more likely to contain an error, without expressing any 
opinion as to exactly where the error was. 

The model assigned the correct version of the melody 
higher probability than the deformed version in 573 out of 
650 trials (88.2%). This level of performance seems 
promising. Probably, not all random “errors” of this type 
would be identifiable as errors even by humans; whether 
the model’s ability is comparable to that of human listeners 
remains to be tested.  

5. Further Issues 
We have presented a probabilistic model which performs 
key identification as well as the surface-level tasks of 
expectation and error detection. On balance, where 
comparison is possible, the model is at least competitive 
with other models in its level of performance. Beyond the 
issue of performance, however, the current model has 
important advantages over others that have been proposed. 
In particular, the current model is able to perform both the 
structural task of key identification and the surface-level 
tasks of expectation and error detection within a single 
framework. This sets it apart from prior models, which 
have addressed these problems separately. The connection 
between expectation and key-finding is indirectly reflected 
in some earlier work—notably in the fact both expectation 
models [9, 10] and key-finding models [8] have made use 
of key-profiles. But this connection is brought out much 
more clearly in the current approach. The current model 
also provides a natural way of calculating the overall 
probability of a melody, which earlier key-finding and 
expectation models do not. 

A further aspect of melody perception deserving brief 
mention here is the actual identification of notes. The 
extraction of note information from an auditory signal is a 
complex process, involving the grouping of partials 
(individual frequencies) into complex tones, and the 
correct categorization of these complex tones into pitch 
categories. (See [11] for a review of recent research on this 
problem.) It seems likely that the model proposed above 
could contribute to this task, by evaluating the probability 
of different possible note patterns (as in the error-detection 
task above). These judgments could then be used in a “top-
down” fashion—in effect, bringing to bear musical 
considerations such as key, pitch proximity, and range on 
the transcription process. Some efforts have been made to 

apply Bayesian methods to transcription [1, 12], but much 
more could be done in this area. 

One obvious question that arises here is whether the 
current model could be extended to handle polyphonic 
music. I have argued elsewhere [13] that a rather different 
approach to key identification is required in polyphonic 
music. Briefly, there is so much use of doubled and 
repeated pitch-classes in polyphonic music that counting 
every event gives too much weight to such pitch-classes; a 
better approach is to simply judge each pitch-class as 
“present” or “absent” within a small segment of music. 
(See [13] for a polyphonic key-finding model based on this 
idea.) However, this model cannot be used to calculate the 
probability of a pitch pattern, and is therefore not well-
suited to modeling expectation and error detection. The 
way these problems might be addressed in polyphonic 
music remains an open question.  
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